Goal for 2019
COMPLETION OF THE CONCEPTUAL DRINKING WATER PLAN

Overview of Scope and Work Flow Process

JANUARY - APRIL
Wood
Drinking Water & Groundwater Modeling

MARCH - MAY
Wood
Water Supply Alternatives analysis

JUNE - AUGUST
Wood
Water Supply Feasibility

SEPTEMBER - OCTOBER
Wood
Summary and Conclusions

NOVEMBER - DECEMBER
Preferred Alternative

CONCEPTUAL DRINKING WATER PLAN
Introduction
Background
Technical Approaches Evaluation
Concept-Level Project Development, Screening, and Evaluation
Alternatives Development
Overview of Approach

Regional Background Information & Community Profiles → Water Supply Improvement Options → Concept-Level Projects → Scenarios → Recommended Scenario
1. Introduction

2. Background
 ✓ Regional overview
 • Contamination in groundwater across affected area (regional look)
 • Summary of drinking water supply and use across affected area
 • Other constraints on water use
 ✓ Community profiles – brief summary of information collected
3. Approach

✓ Description of approach

✓ Modeling

4. Model Development and Results

✓ Community water system profiles and modeling

✓ Groundwater modeling
5. **Evaluation of Water Supply Improvement Options**

- **Water Supply Improvement Options**

 i. Drill new wells in optimized locations

 ii. Connect subsets of communities to St. Paul Regional Water Services

 iii. Create new surface water treatment plant for use of Mississippi or St. Croix River waters

 iv. Create new regional water supply system(s) (with treatment)

 v. Create new rural drinking water supply system(s) (with treatment)

 vi. Move private well hookups to existing drinking water supply system(s) (where available)

 vii. Provide drinking water treatment of existing water supply system(s)

 viii. Provide point of use or point of entry treatment of drinking water

 ix. Non-potable and potable reuse of treated 3M containment water

 x. Minimize water well usage by reducing current potable demand
6. Concept-Level Project Development, Screening, and Evaluation

- Discussion of how project concepts were identified
- Overview of project criteria
- Treatment technology alternatives analysis for PFAS (up to 10 technologies evaluated)
- Application of criteria
- Hydrological analysis of concept-level projects that passed screening criteria
7. Scenario Development and Evaluation

✓ Proposed drinking water supply scenarios
✓ Basis for scenario identification
✓ For each scenario:
 • Map of projects that make up the scenario
 • Brief descriptions of each project
 • Approximate # of people served
 • Screening-level cost assessment (+/- 50%) of capital cost and operation/maintenance/replacement cost
 • Potential impacts of scenarios

✓ Recommended scenario

8. Summary and Conclusions
9. Overview of New Regional Model

Hannah Albertus-Benham, Shalene Thomas, Jim Feild, PhD, Wood Environment & Infrastructure Solutions Inc.

April 3, 2019
Agenda

1. Purpose
 • What questions will modeling address?
 • How will questions be addressed?

2. Domain Extent

3. Methodology and Data Input
 • Development of Conceptual Site Model (CSM)
 • Numerical Model

4. Timeline for Completion
Main Concerns based on discussions

• Mobilizing groundwater contamination from pumping activities that could adversely impact unaffected portions of the aquifer, particularly during transient peak demand periods;

• Avoiding negative surface water and wetland impacts;

• Aquifer safe yield.
Main Concerns

SAFE YIELD_THRESHOLDS

[Diagram showing water-table and deep well concepts with thresholds A, B, and C, indicating 100%, 50%, and 25% available head, respectively.]
What questions will modeling address?

• A survey was developed and distributed to SubGroup-1 stakeholders

• The survey asked participants to rank what questions were most important to address

• Survey was divided into three sections
 ✓ Water quantity
 ✓ Water quality
 ✓ Surface water implications
GW Modeling Objectives – Responses Received

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Overall AVERAGE</th>
<th>Overall RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) General:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combine all current models, data from the previous models, and new data (i.e., Washington County Geologic Atlas) to build a new regional model. This new regional model would then be the basis for an infinite series of sub-models that could be used for local issues in the future and aid in answering questions specific to each area.</td>
<td>H</td>
<td>Unk-H</td>
</tr>
<tr>
<td>2) Groundwater Quantity (Elevation) Concerns Accounting For:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>❖ All significant withdrawals currently within the model domain under multiple pumping scenarios (i.e., high pumping rates, average pumping rates, low pumping rates)</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>❖ Potential new water supply wells to meet growing demands on groundwater resources</td>
<td>H</td>
<td>L-M-H</td>
</tr>
<tr>
<td>❖ Droughts</td>
<td>M-H</td>
<td>Unk-L-M-H</td>
</tr>
<tr>
<td>❖ Seasonal changes in surface water levels within the model domain</td>
<td>M</td>
<td>Unk-L-M-H</td>
</tr>
<tr>
<td>❖ Assess aquifer safe yield</td>
<td>H</td>
<td>M-H</td>
</tr>
<tr>
<td>❖ Year-to-year and seasonal variability in water demands</td>
<td>M-H</td>
<td>M-H</td>
</tr>
<tr>
<td>❖ Climate change and recharge</td>
<td>M</td>
<td>L-M-H</td>
</tr>
<tr>
<td>❖ Others?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectives</td>
<td>Overall AVERAGE</td>
<td>Overall RANGE</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>3) Groundwater Quality and Plumes:</td>
<td></td>
<td></td>
</tr>
<tr>
<td> Optimization of rates (lower or higher) for wellfields affected by contamination (PFAS or other contaminants). The optimized rate will be driven by the need to reduce or limit plume migration, or capture contamination as part of remedial options.</td>
<td>H</td>
<td>M-H</td>
</tr>
<tr>
<td> Contaminant migration and groundwater flow paths to evaluate capture zones and see where the groundwater contamination affecting a well/wellfield or surface water body originated.</td>
<td>M</td>
<td>L-M-H</td>
</tr>
<tr>
<td> Delineate changes in PFAS plume flow paths that may result in new or increased contamination of private and non-community drinking-water supply wells.</td>
<td>H</td>
<td>L-H</td>
</tr>
<tr>
<td> Transport of actual contaminants.</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td> Evaluate how agricultural practices such as application of fertilizers could affect groundwater quality.</td>
<td>M</td>
<td>L-M-H</td>
</tr>
<tr>
<td> Others?</td>
<td>-</td>
<td>H</td>
</tr>
</tbody>
</table>
GW Modeling Objectives – Responses Received

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Overall AVERAGE</th>
<th>Overall RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4) Implications to Surface Water Bodies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ Identify which surface water bodies (lakes, rivers, streams, etc.) are affected the most by pumping conditions.</td>
<td>M</td>
<td>L-M-H</td>
</tr>
<tr>
<td>☐ Identifying how the baseflow of rivers and/or streams us affected.</td>
<td>M</td>
<td>M-H</td>
</tr>
<tr>
<td>☐ Identifying lake levels under normal seasonal conditions and how much they change during dry periods.</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>☐ Identifying if wetlands are affected (areal extent).</td>
<td>M</td>
<td>L-M-H</td>
</tr>
<tr>
<td>☐ Identifying which surface water bodies are most affected by contaminants and/or plume migration.</td>
<td>M</td>
<td>M-H</td>
</tr>
<tr>
<td>☐ Others?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of Available Models

- Metro Model 3 (MM-3)
- DNR Northeast Metro Lake-Groundwater (NMLG) Model
- USGS NMLG Model
- South Washington County
- Wellhead Protection Areas (WHPA) delineations (various models and other approaches)
Approximate Area of Model Domain

- Metro Model 3 (MM-3)
- DNR Northeast Metro Lake-Groundwater (NMLG) Model
- USGS NMLG Model
- South Washington County
- Wellhead Protection Areas (WHPA) delineations (various models and other approaches)
Methodology and Data Input

✔ Development of a Conceptual Site Model (CSM)
 • What is it?
 • What does a deliverable look like? (Memo and Model? Per SOW)
 • Needs from SG-1 members (Data? Review? Other?)

✔ Development of a Numerical Model
Example CSM–Fence Diagram
I am not sure if these next 4 slides are examples of what can be done but we should probably add a slide that explicitly provides expectations for next steps/meeting.

Thomas, Shalene, 3/18/2019

I think we demonstrate that these are the types of products that can/will be produced as a result of this new model.

Michele Mabry, 3/19/2019
Geologic Data Evaluation & Interpretation
Example 3D CSM
Responses to Groundwater Withdrawal
Groundwater Withdrawal

[Chart showing groundwater withdrawal from 1953 to 2013, with a significant increase in the late 1980s and 1990s.]
Groundwater Levels Area B
Numerical Modeling
Particle Tracking – Forwards in time
Proposed Test Well Location 5: 1,000 gpm

Symbol Key:
- Groundwater Flow Path
- Drawdown Contour
- SWMMU Boundary
- Installation Boundary

Contour Interval = 1 foot
GPM = Gallons Per Minute

Time Posting (years):
- 0 - 1
- 1 - 2
- 2 - 5
- 5 - 10
Timeline for Completion

1. CSM Development – June 2019
2. Numerical Model - July 2019
3. Transport Model/Evaluation- September 2019

DRAFT REPORT- November 2019

FINAL REPORT (as part of CDWSP) – December 2019
Thank you!

Shalene Thomas, PMP
Wood, East Metro Project Manager
Shalene.thomas@woodplc.com
612.252.3697

Hannah Albertus-Benham, PE
Wood, East Metro Assistant Project Manager
Hannah.albertus@woodplc.com
612.252.3657

Jim Feild, PhD
Wood, East Metro Groundwater Model Lead
James.feild@woodplc.com
865.266.9492