Washington County Geologic Atlas Part A (Geology) And other information relevant to GW-SW modeling

Presented to 3M Settlement Technical Subgroup meeting

4/3/2019

Tony Runkel runke001@umn.edu UNIVERSITY OF MINNESOTA

Driven to Discoversm

County Geologic Atlas Program: 2 Parts

DNR Part B: Hydrogeology

https://www.dnr.state.mn.us/waters/groundwater_section/mapping/status.html

Geologic Atlas of Washington County Part A

- Plate 1: Data-Base Map
- Plate 2: Bedrock Geology
- Plate 3: Surficial Geology
- Plate 4: Quaternary Stratigraphy
 - **Plate 5: Sand Distribution Model**
- Plate 6: Bedrock Topography and Depth to Bedrock ALL PRODUCTS AVAILABLE AS PAPER MAPS/REPORTS AND AS DIGITAL FILES SUITABLE FOR GIS APPLICATIONS

Washington County Atlas, 2016

Data-Base Map

-Exposures of the rock -Core samples -Water well construction records (CWI) (>14,000 located wells) -Scientific and engineering borings (QDI) -Drill cuttings -Borehole geophysical log -Giddings probe holes -Texture analysis -Soil auger hole -Passive seismic sounding -Seismic refraction sounding

Bedrock Geology

Cross sections depict how the rock formations are stacked in a vertical sequence, their structure and thickness

Washington County Structure Mapping of the top of the Jordan Sandstone

-Over 500 feet of relief on the Jordan surface

-Near vertical displacement on the order of 50-300 feet at faults

-Rasters of tops of all bedrock units are part of the atlas products (therefore the elevation and thickness of all units is gridded)

Related MGS research offers information on hydrogeologic properties (some of which is used for DNR Part B of atlas)

Based on:

30+ years detailed mapping Thousands of borehole geophysical logs Hundreds of hydraulic tests at multiple scales Fracture characterization (outcrop and boreholes) Groundwater chemistry (esp residence time, e.g. MNDNR Part B atlases) Dye tracing Some Key References relevant to SE MN: Alexander et al 1996 Runkel et al 2003, 2006, 2013, 2014, 2018 Tipping et al 2006 Anderson et al 2011 Luhman et al 2011 Green et al 2012 Meyer et al 2016 Many other reports/pubs on county & smaller scale map and hydro projects, **including Washington Co**

Hydrostratigraphy integrated with regional water chemistry data for conceptual model of contaminant transport

University of Minnesota

Bedrock Topography

• Elevation of the bedrock surface (350-1050 ft)

Depth to Bedrock

• Range from 0 to 450 feet thick.

UNIVERSITY OF MINNESOTA

Surficial Geologic map

Surficial Sand and Gravel only (with thickness)

Sand Models (here showing depth and thickness of three sand and gravel units)

Sand Models

Stacked surfaces from land surface to bedrock surface Major sand bodies on left Intervening till and other fine grained sed on right Gray shading is bedrock surface

Groundwater modeling

•"Containers" geometrically more complex than bedrock

- •Matrix more complex
- •Fractures poorly understood
- •K values scarce and for fine units uncertain
- •A number of methods have been applied for modeling

Appendix A. Table 2. Summary of horizontal and vertical hydraulic conductivity values method, this study.

Hydraulic Conductivity - horizontal (ft/day)						
method/hyd	ro_class	n	mean	min	max	geomean
Grain size description						
1	loam to clay loam	1155	2.37E-01	2.83E-05	5.45E+00	9.64E-02
2	loam to sandy loam	325	1.26E+00	2.78E-03	1.42E+01	5.70E-01
3	loam, silt rich; silt and clay	79	3.45E-01	8.57E-03	3.35E+00	1.39E-01
4	loam to sandy clay loam	37	1.35E+00	8.85E-02	3.42E+00	1.02E+00
5	sand and gravel	168	5.47E+01	2.83E-02	3.09E+02	1.92E+01
6	fine sand	32	4.81E+00	5.84E-05	3.69E+01	1.61E-01
7	sandy silt	38	5.65E-01	1.42E-04	1.13E+01	2.42E-02
Lab Permeameter						
5	sand and gravel	3	2.34E+00	4.30E-01	4.50E+00	1.60E+00
Aquifer test						
5	sand and gravel	118	1.17E+02	4.82E-01	4.15E+02	6.53E+01
Slug test						
1	loam to clay loam	17	3.87E-01	5.67E-04	3.83E+00	2.80E-02
2	loam to sandy loam	34	2.27E+00	2.83E-03	4.30E+01	2.00E-01
3	loam, silt rich; silt and clay	7	1.43E-02	7.65E-05	9.35E-02	7.74E-04
5	sand and gravel	215	3.98E+01	5.00E-03	5.40E+02	8.07E+00
6	fine sand	14	3.91E+00	1.42E-03	2.61E+01	5.11E-01
7	sandy silt	18	2.49E+01	1.40E-01	1.50E+02	5.54E+00
Specific Capacity - excluding CWI						
5	sand and gravel	17	40.7294	1.5	152	2.66E+01
Hydraulic Conductivity - vertical (ft/day)				
method		n	mean	min	max	geomean
Lab Permea	meter - constant head					
1	loam to clay loam	17	1.68E-01	6.24E-05	2.83E+00	7.26E-04
5	sand and gravel	51	7.79E+00	4.82E-05	1.11E+02	1.69E+00
6	fine sand	2	1.70E+00	1.50E+00	1.90E+00	1.69E+00
7	sandy silt	9	8.55E-01	8.50E-04	5.67E+00	8.88E-02
Lab Permeameter - talling head						
1	loam to clay loam	37	7.14E-02	2.83E-06	1.98E+00	2.19E-04
2	loam to sandy loam	14	2.45E-01	1.98E-05	3.40E+00	9.81E-04
-	loam, silt rich; silt and					
3	clay	4	1.94E-04	6.80E-05	3.97E-04	1.55E-04
5	sand and gravel	4	4.27E-01	6.80E-03	1.13E+00	1.22E-01
6	tine sand	1	2.35E-01	2.35E-01	2.35E-01	2.35E-01
7	sandy silt	31	1.07E-01	9.35E-06	1.64E+00	1.73E-03
Aquifer test		3				
5	sand and gravel	3	6.76E+01	7.00E-01	1.01E+02	1.93E+01

Tipping et al., 2010

UNIVERSITY OF MINNESOTA

DNR Part B: Hydrogeology

• Illustrates groundwater hydrogeologic setting, aquifer distribution, pollution sensitivity, groundwater recharge, and subsurface flow of the aquifers within the county.

