

Perfluorochemicals (PFCs) in the East Metro

James Kelly & Karla Peterson

MDH Environmental Health Division

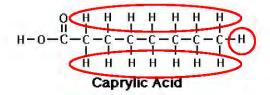
August 21-22, 2018

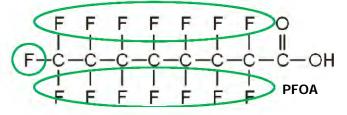
Agenda

- What are PFCs (also known as PFAS)?
 - Where do they come from?
 - Why are they important?
- What are MDH's Health-Based Values?
- What about PFCs in Minnesota?
- How have PFCs affected drinking water supplies and what actions have been taken?
- What are future options for community water supplies?

PFCs (also known as PFAS)

- Human-made chemicals found in everyday items
- Used since 1940s to make products that resist heat, stains, water, oil and grease; production increased rapidly in 1970s
- Many other specialized industrial and commercial uses (operative word: non-stick)




PFCs in the Environment

- PFCs are persistent in the environment
- PFCs can be found in
 - Food packaged or processed with PFAS-containing materials or grown in contaminated soil/water
 - Commercial household products, including stain-resistant fabrics, nonstick products, polishes, paints, waxes, and cleaning products
 - Workplaces that use PFAS
 - Drinking water, typically associated with a specific facility or site
 - Living organisms, including fish, animals, and humans

PFCs in the Environment

- PFCs do not break down
 - C-F bond strongest covalent bond
 - No hydrolysis, photolysis, or biodegradation
- Do not adsorb readily to aguifer materials
 - Infiltrate rapidly to the groundwater
 - Little or no retardation in aquifers
 - Rates affected by PFC chain length and functional group
- Chemical structure similar to fatty acids
 - "Proteinphiles" adsorbed into blood serum of living organisms
 - Also controlled by chain length and functional group

Why are PFCs important?

- Most people have been exposed to PFCs because they are in so many products
- PFCs can accumulate and stay in the human body for long periods of time
- There is some evidence that exposure to PFCs at high levels is associated with negative health outcomes

MDH Health-Based Values

Most Sensitive Health Effects

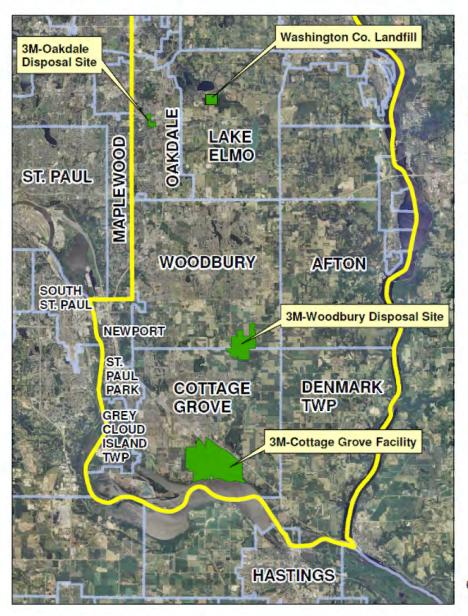
Exposure ≠ Health Effects

Margin of Safety

Fraction from Drinking Water


High-End Water
\textcolor{Intake Rate /

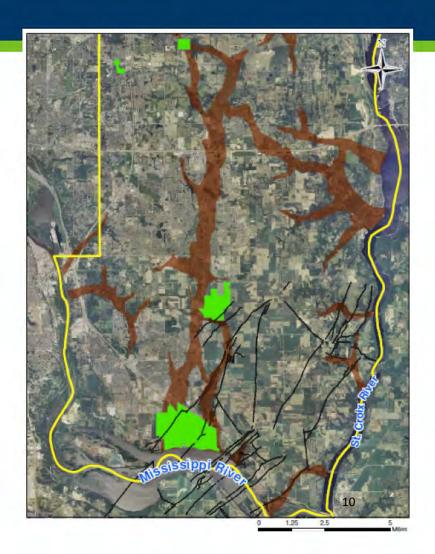
Health-Based Value


MDH Health-Based Values

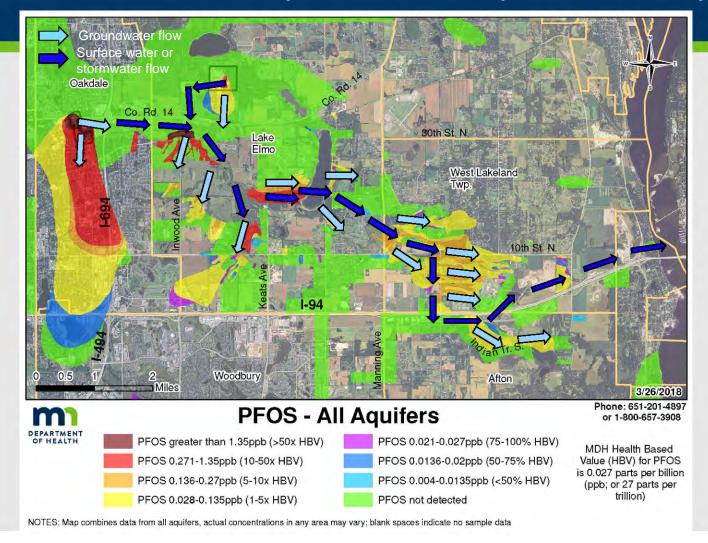
PFOS: 0.027 ppb PFOA: 0.035 ppb

PFBA: 7.0 ppb PFBS: 2.0-3.0 ppb

- MDH evaluates the combined effects of PFCs: Health Risk Index (HRI)
 - Allows us to account for differing levels of toxicity in similar chemicals
- Protective for people who are exposed over their lifetimes
- Protective for fetuses
- Based on animal studies showing slight liver and thyroid effects (adults) and immune system and developmental effects (infants/children)

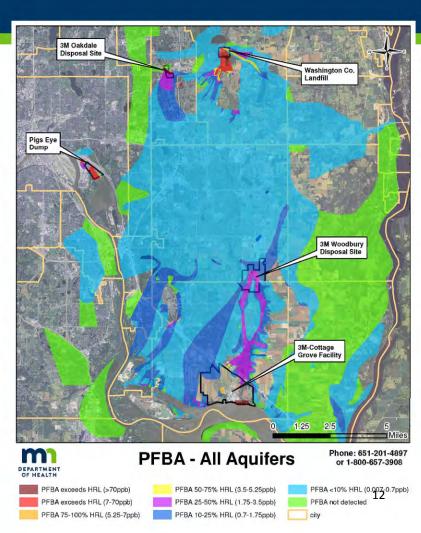


Location of 3M PFC Sites in Washington Co., Minnesota

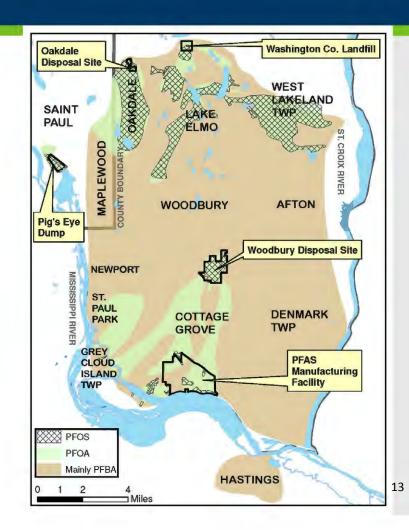


Groundwater Flow

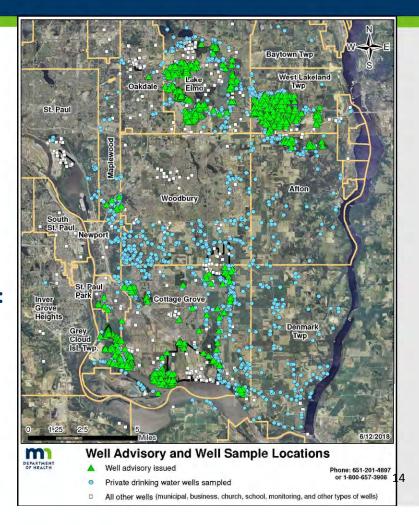
- In the eastern half of the county, groundwater flows to the St. Croix River
- In the western half of the county, groundwater flows to the Mississippi River
- Locally, groundwater flow may be influenced by pumping wells



PFAS in Surface Water – Important Transport Pathway


Result: Extremely Large "Co-Mingled" Plumes

- Over 130 sq. mi.
 - 4 major aquifers
 - 8 municipal systems & >1,800 private wells
 - Much larger than predicted by models
- PFBA most widespread
 - More PFBA in source areas
 - More mobile
- Movement of PFAS affected by several factors


PFOS and PFOA Less Widespread

- PFOS and PFOA present at high concentrations in source areas
- Groundwater concentrations decrease rapidly with distance from source
- Surface water concentrations
- Different PFAS "signatures" in each site based on chemistry at time of disposal
 - Washington Co. landfill & Woodbury Disposal Sites dominated by PFCAs
 - Helped to identify transport pathways

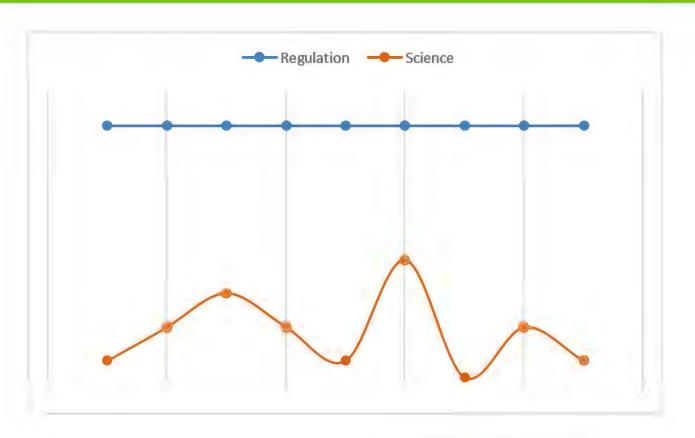
Well Sampling Effort & Private Well Drinking Water Advisories

- ~2,500 wells sampled since 2003
 - Frequent, intensive monitoring of private wells:
 - Near source areas
 - Areas with high or changing PFAS concentrations
 - Areas with complex geology
 - Less frequent monitoring of "sentry" private wells:
 - Distal portions of plumes
 - Areas with low and stable PFAS concentrations
 - Areas with relatively simple geology
- >800 drinking water advisories issued

Community Water Supply Impacts

- Everything in a drinking water system is interdependent and very complex
 - Trade-offs: choice of technology, design, and operations can have unintended consequences
- Communication must include the public, regulators/regulatees, and elected officials
- Water systems do not have the luxury of waiting; people drink water every day

Health Risk and Regulation


- Health risks are incremental
- Standards are discreet segments
- Public perception varies

Regulatory Consistency vs. Scientific Discovery

- Implementation of regulations requires consistency
- Science is always learning new facts
- Need space between the two
- Four-quarter average concentration used

Response Actions – East Metro

- Removal & proper disposal of contaminated soil
- Treatment of groundwater
- Treatment of drinking water where Health-Based Values exceeded

Parties Involved in Response

Oakdale (27,973)

- Has 9 wells; PFAS exceeds MDH health-based guidance value in 7
- PFAS concentrations highest in the state for community systems; peak of 440 ppt PFOA and 610 ppt PFOS
- Treatment (GAC) installed in 2006 for 2 wells; change carbon annually
- Primarily rely on 2 treated wells and 2 "clean" wells for water supply
- Video: http://bit.ly/2rWs9z5

Cottage Grove (36,492)

- Has 12 wells; 8 with PFAS exceeding MDH health-based guidance values
- PFAS concentrations: no PFOS, 66 ppt PFOA
- Impacted when health-based guidance values lowered
- Installed GAC treatment on 2 wells in 2017
- Have a direct blending point for 7 wells that can manage concentrations
- Temporary watering ban in 2017 after receiving health advisory letter from MDH and prior to treatment

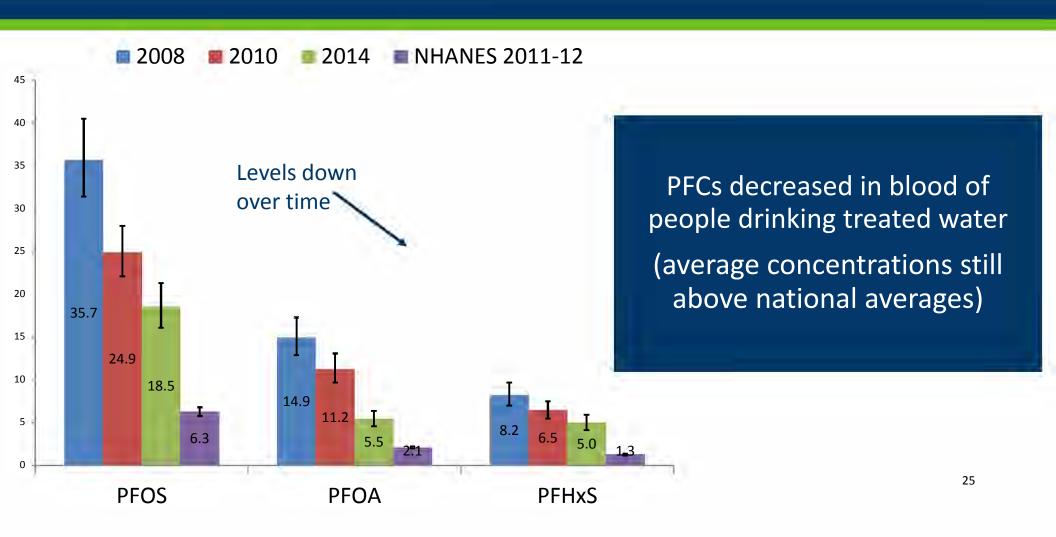
Woodbury (69,245)

- 19 wells; PFAS exceeds MDH health-based guidance values in 5 wells
- PFAS concentrations
 - PFBA: 0.1-0.41 ppb (all wells)
 - PFHxS: 0.07 ppb (Well 13 only)
 - PFOA: 0.014-0.049 ppb (8 wells)
 - PFOS: 0.023-0.026 ppb (3 wells)
- Primarily rely on wells that meet MDH health-based values for water supply. Others are used only seasonally to meet peak demand.

Saint Paul Park (5,519)

- Has 3 wells, with 2 exceeding MDH health-based guidance values
- PFAS concentrations: no PFOS, 43 ppt PFOA
- Impacted when health-based guidance values lowered
- Want to install treatment on wells
- Managing pumping so clean well is used the most, and enforcing watering restrictions

Lake Elmo (4,878 / 8,069)


- Has 3 wells with 1 exceeding MDH health-based guidance values
- PFAS concentrations: no PFOS, 46 ppt PFOA
- Impacted when health-based guidance values lowered
- Many private wells in the city
- Options for new well limited by water quantity issues

Biomonitoring Shows Effectiveness of Response

Future Response Options

- Regional interconnect
- New treatment facilities
- New wells
- Water conservation; limit use of contaminated wells
- Adapted blending scheme
- Others?

More Information

- MDH General PFAS Information: http://www.health.state.mn.us/divs/eh/hazardous/topics/pfcs/index.html
- ITRC Factsheets: https://pfas-1.itrcweb.org
- US EPA information: https://www.epa.gov/pfas
- MDH Health Risk Limits: http://www.health.state.mn.us/divs/eh/risk/guidance/gw/table.html
- MPCA PFC Investigations: https://www.pca.state.mn.us/waste/perfluorochemicals-pfcs

Questions?

James Kelly

james.kelly@state.mn.us 651-201-4910

Karla Peterson

karla.peterson@state.mn.us 651-201-4679