

PFAS Treatment Technologies

Shalene Thomas, Wood Environment & Infrastructure Solutions Inc.

Karla Peterson, MDH

December 18, 2018

Agenda

1. Overview of Technology Life Cycle

- √ How does a technology move through development?
- ✓ Where are PFAS in the spectrum?
- √ Why is this relevant?

2. Defining the Viable Options

- √ What are the key variables to consider outside of technology maturity?
- √ How can we stay up to speed on new developments?

3. The Drinking water options

✓ Full-scale viable technology options

Overview of Technology Life Cycle

How does technology move through development?

Overview of Technology Life Cycle

PFAS Project Spectrum via DoD

PROJECTS OVERVIEW

Projects										
Electrocatalytic (ER2424; CDMSmith)		In situ coagulants (ER2425; Minnesota)			In situ chemical reductive defluorination (ER2426; Purdue)			Coupled reactive nanoscale materials & bioremediation; mixed contaminants (ER2714; Brown)		
In situ chemical oxidation & bioremediation; mixed contaminants (ER2715; UC Berkeley)		Electrolytic degradation with electrobiostimulation; mixed contaminants (ER2718; Colorado State)			Key F&T properties impacting attenuation & treatment; mixed contaminants (ER2720; Colorado School of Mines)			Thermally enhanced persulfate oxidation followed by P&T (ER201729; Navy)		
In situ & ex situ treatm ISCO or amendment, destruction, IX (1306; Clarkson	plasma oxi	dation, adsorption, adsorp material regeneration (1289; UC Riverside)	•	În o	adsorbents r ex situ ; Cornell)	regen	ercially available nerable resins Ex situ 063; CSM)		ins, electrochemical &/or iic treatment for regenerant Ex situ (1027; Aptim)	
Protein based adsorbents (1417; U.S. Army)	adsorbents AC, electrically discharge to regene		Electrochemical oxidation (1320; Univ of GA)		Mesoporous organosilica sorbents Ex situ (1300; Wooster)		Cationic polyaniline (PANI) & polypyrrole (PPy) polymers (1052; Univ of AZ)		Electrocoagulation (1278; AECOM)	
Proof of Concept (Inves	tigation Derived	l Waste)								
Advanced oxidation-reduction & membrane concentration (1497; UC Riverside)		Modified SiiC based catalys 13; Research Triangle Instit		hydrate	efluorination by d electrons s; Miami)		nal treatment 556; Aptim)	Nonth	ermal plasma technology (1570; Drexel)	
Combined photo/electrochemical reduction (1595; UCLA)		Electron beam technology (1620; Texas A&M)		Plasma based treatment (1624; Clarkson)		Hydrothermal technologies (1501; Colorado School of Mines)			Indirect thermal desorption with thermal oxidation (1572; EA Engineering)	

Key Take-away Messages

Why is this relevant?

- PFAS are still considered emerging contaminants, especially in the context of treatment technologies
- There is no "one-size fits all" technology for PFAS- there are many variables to consider
- Not all technologies are effective or applicable to drinking water
- Continuous review of viable technologies is necessary to keep pace with development

Defining the Viable Options

- √ How can we stay up to speed on new developments?
 - 1. Track key funding research entities i.e. ESTCP/SERDP

2. Track key researchers

3. Track key collaboration organizations

Defining the Viable Options

- ✓ What are the key variables to consider outside of technology maturity?
 - Technology

 application/scenario—drinking
 water to waste
 - 2. Influent concentrations and PFAS characteristics
 - 3. Co-contamination

Source: Calgon

✓ Removal with GAC

- Influent GAC vessel, "Lead"
- Second GAC vessel, "Lag"
- Monitoring
 - Influent
 - Mid-point
 - Effluent
- Carbon Change Out
 - Lead to reactivation
 - Lag to lead
 - New to lag

✓ Removal with GAC

Considerations:

- Public health exposure (balancing risks)
- Environment (waste, energy, available resources, etc)
- Capital costs (immediate and long term)
- Operation and management costs (long term)
- Changing science (flexibility)

Treated

water

✓ Removal with ion-exchange resins

PFAS in

water

Short Contact Time ~3 mins Simple & Effective - Operator **Preferred**

Incineration or other disposal alternative

Source: ITRC/Purolite 12/18/2018 11

- ✓ Removal with "regenerable" ion-exchange resins
 - ✓ Treatment process: Particle filters, GAC, sorbent media, in-place regeneration
 - ✓ Construction completed April 2018
 - ✓ On-going optimization
 - ✓ NOT CURRENTLY APPROVED FOR DRINKING WATER IN THE US

12/18/2018 Source: ECT2 12

✓ Removal with ion exchange resins

Considerations:

- Public health exposure (balancing risks)
- Environment (waste, energy, available resources, etc)
- Capital costs (immediate and long term)
- Operation and management costs (long term)
- Changing science (flexibility)

- ✓ Extraction and membrane filtration/reverse osmosis
 - ✓ Membrane Processes
 - ✓ Effective for PFAS
 - High pressure membrane
 - High energy usage
 - Reject water disposal
 - Typically used on lower flow rates
 - ✓ Removes a wide range of constituents:
 - Including hardness, dissolved solids, as well as VOCs and PFAS
 - √ Costly
 - Capital
 - Operating

Photo courtesy of Agape Water Solutions, Inc.

Source: ITRC

✓ Removal with membrane filtration/reverse osmosis

Considerations:

- Public health exposure (balancing risks)
- Environment (waste, energy, available resources, etc)
- Capital costs (immediate and long term)
- Operation and management costs (long term)
- Changing science (flexibility)

Drinking Water Options Comparison

Granular Activated Carbon

✓ Pros

- ✓ Good removal of PFOS/PFOA and most long chain PFAS
- ✓ Readily available network of GAC vendors and reactivation facilities
- ✓ NSF Approved for drinking water
- ✓ GAC Media is less expensive
- ✓ Used for Point of Entry Systems (POET)

✓ Cons

- ✓ Less effective on short chain PFAS
- ✓ Virgin GAC (>\$) significantly outperforms reactivated GAC (<\$)
- ✓ Requires significant footprint (i.e. larger systems)
- ✓ Organic co-contaminants compete for sites
- ✓ Potential concerns regarding effectiveness of reactivation process
- ✓ POET systems require replacement annually (typical)

IX Resins

✓ Pros

- ✓ higher capacity than GAC (> removal of PFOS/PFOA, short, and long chain PFAS vs. GAC)
- ✓ Requires smaller footprint than GAC
- ✓ May allow for onsite PFAS destruction (Regen IX only)
- ✓ Single use resin NSF approved for drinking water
- ✓ Point of Entry Treatment (NSF Media)
 - ✓ Long life for POET systems

✓ Cons

- ✓ Larger pumps that use more power required
- ✓ Regenerable IX uses flammable solvent for regeneration
- ✓ Co-contaminants may result in media fouling
- ✓ Regenerable system not NSF approved
- ✓ Media more expensive than GAC

12/18/2018 16

Key Take-away Messages

Reminder

- PFAS are still considered emerging contaminants, especially in the context of treatment technologies
- There is no "one-size fits all" technology for PFAS- there are many variables to consider
- Not all technologies are effective or applicable to drinking water
- Continuous review of viable technologies is necessary to keep pace with development

Thank you!

Shalene Thomas

Shalene.thomas@woodplc.com

612-490-7606

Karla Peterson

Karla.peterson@state.mn.us

