Overview of Project 1007 and Summary of Near-Term Assessment Tasks

Daryl Beck, P.E., Senior Engineer - AECOM

Rebecca Higgins, HydroGeologist - MPCA

May 15, 2019

Project 1007 within the 3M Settlement

3M Settlement – Included in Priority 1:

"The MPCA shall conduct a source assessment and feasibility study regarding the role of the Valley Branch Water District's project known as Project 1007 in the conveyance of PFCs in the environment."

Agenda:

- Who's Who
- What/Where is Project 1007 History and Background
- Near-Term Project Scope (FY19)
- Long-Term Project Scope TBD

Project 1007 Background and History

- Completed in 1987 as a Flood Control System for the Tri-Lakes Area (Lakes Jane, Olson, and DeMontreville) of the Valley Branch Watershed District
- System of Storm Water Pipes, Open Channels, Catchbasins, and 2 Dams to Direct Water Flow from Tri-Lakes to St. Croix River
- Project 1007 Also Utilizes a Number of Surface Water Bodies (Lakes and Creeks) to Connect to the St. Croix River
- From ~1988 to the Early 1990s, Untreated Water from a Gradient Control Well at the Washington County Landfill Discharged to Project 1007
- Raleigh Creek, which Flows Through the Former 3M Oakdale Disposal Site is Utilized to Direct Flow as Part of Project 1007

Project 1007 Configuration

Source: A delicate balance: Flood control in the Tri-Lakes area, Valley Branch Watershed District, www.vbwd.org

PFOS Plume Overlay Across Project 1007 Layout

Washington County Landfill Inlet Piping

Raleigh Creek – Project 1007 Confluence

Eagle Point Dam

Eagle Point Dam (Cont'd)

Eagle Point Dam Outlet Pipe

West Lakeland Storage Sites

West Lakeland Storage Sites (Cont'd)

Rest Area Dam

Overall Objectives to Address Settlement

- Assess Existing and Yet Unidentified Potential PFAS Sources Contributing to PFAS Impacts in Drinking Water Aquifers and Surface Water Bodies Within and Adjacent to the Project 1007 Boundaries;
- Identify the Mechanisms by which PFAS is Entering Surface Water, Stormwater, and Groundwater as it is Conveyed by Project 1007;
- Assess the Degree to which the Project 1007 Flood Mitigation System Construction may be Contributing to PFAS Groundwater Contaminant Flow and Transport; and,
- Evaluate the Feasibility of Mitigating Ongoing PFAS Migration to Surface Water and Groundwater Receptors

Near Term Tasks in FY 19

- 1 Gather, Organize, and Review Existing Environmental Sampling Data
 - Purpose
 - Identify Gaps in Existing Data where Further Data Collection and Analysis will Assist with Future Project Decision Making
 - Recommend Development of a Visual Data Presentation Platform to Aid in Communicating Project Findings to Project Stakeholders
- 2 Engineering Based Review of Project 1007
 - Purpose
 - Identify Components/Locations of Project 1007 where PFAS Migration from Surface Water to Subsurface Aquifers is Occurring

Near Term Tasks in FY 19 (Cont'd)

- 3 Review of Possible PFAS Sources Within and Adjacent to the Project 1007 Boundaries
 - Mirror Image of 4-County PFAS Inventory Project (Superfund Project)
- 4 Evaluate Surface Hydrologic and Subsurface Hydrogeologic Data
 - Purpose
 - Use Existing SW and GW Models
 - Evaluate the SW to GW Transport Mechanisms
 - Enhance Understanding of Transport Mechanisms through Future Data Collection and Modeling Efforts

Questions?

