MINNESOTA POLLUTION CONTROL AGENCY

Pilot Study Update Stantec

Treatment of Regional Groundwater with Pilot Options

Activated Carbon for DW Treatment

Treatment Processes

Key Design Criteria: EBCT, carbon material and pore size

<u>Strengths</u>

- High removal of longer chain compound such as PFOA/PFOS.
- Multiple suppliers.
- Well studied through plethora of bench and pilot studies.
- Applicable to intermittent (PAC) or long-term treatment (GAC) applications.

<u>Weaknesses</u>

- Competition from nontargeted constituents such as TOC.
- Poorer removal of small chain compounds (e.g. PFBA, Gen-X) now manufactured in place of PFOA/PFOS.
- Uncertainties of PFAS fate during regeneration.
- Incineration is energy intensive.

Treatment Processes

Anion Exchange for DW Treatment

Key Design Criteria: EBCT and resin characteristics

Strengths

- More effective at removal of short-chain PFAS compounds.
- Still effective at removal of longer-chain compounds with higher capacity than GAC.
- Minimal influence from TOC.
- Shorter EBCT results in vessels of smaller footprint than those used with GAC.

Weaknesses

- Fouling from nontargeted constituents such as iron and manganese.
- All NSF certified vendors are only for single use.
- Requirement for methanol during regeneration precludes onsite system development.
- Media more expensive than GAC, but higher bed volumes may mitigate cost differential.

Study Goal

Evaluate ion-exchange as a potential treatment process for PFAS removal both as a stand-alone process and in conjunction with GAC.

Pilot Design

Installed Pilot Plant

Sampling Regime

Parameter	i not earlphing i requeries (erre, irr, erreint,				
	Influent	Effluents [†]	#1 Ports	#2 Ports*	#3 Ports*
Flowrate	online	na	na	na	na
Temp & Pressure	1/day	1/day	na	na	na
24 PFAS	1/week	1/week	1/month	1/quarter	1/quarter
Alkalinity, bicarbonate, chloride, iron, manganese, nitrite, nitrate, sulfate, TOC	1/every other week	1/every other week	na	na	na
pH, EC, turbidity, TDS,	1/week	1/week	na	na	na
DO	Online				

Pilot Sampling Frequency (GAC_IX_GAC/IX)

[†]Pilot consists of 5 effluents (i.e., GAC, IX#1, IX#2, GAC/IX#1, GAC/IX#2). *Sampling frequencies will be increased once breakthrough is observed for Port #1

Where are we now with the pilot study?

Pilot has been constructed, mobilized and wet tested.

Initial QA/QC on pilot plant and laboratory analysis has been completed.

The Johns Hopkins/Stantec Alliance Laboratory has developed detection limits for PFAS to 0.25 ng/L.

Initial runs showed iron in the water to be an operational issue. An iron-removal (Birm) filter is currently being added to the pilot train.

Pilot to restart in approximately two weeks and operate for 18 months or until breakthrough of PFAS compounds.

After 6 months, a good idea of column behavior should be available.

Project Schedule

Pre-Pandemic Project Schedule

Activity	Date		
Mobilization of birm filter	March 16-29, 2020		
Restart Pilot	March 30, 2020		
Initial Results Update	June 2020		
Second Results Update	September 2020		
Subsequent Results Updates	Every quarter thereafter		
	September 2021 or HI		
Study Conclusion	breakthrough		